最近参加了一场直播。主要讲了个性化推荐算法及应用场景。现自己总结一下主讲内容,以备自己思考。有些地方个人也不是太理解,同时也想与大家交流沟通下。
所以一个推荐算法要同事服务三个利益不同的相关方,这本身导致了一个矛盾性。所以会有一些纠结的地方,实际上由于他们的目的不。
这个用户场景比如说我在手机上看,和我在客厅里看,实际上对视频的长短还有很多内容会有不同,因为手机上有可能是在公共场合、办公室,但是在家里可能就会稍微私密一些。还有时间,假如说我手机是早上看,家里面我是晚上看,也会不一样。所以这些都叫所谓的上下文吧,就是场景信息。
实际上就对用户做了一个切分,当用户在这个组合场景底下的时候,所借鉴的历史行为也是原来发生在这个组合底下的,这样就不会出现晚上看了什么成人动漫,早上被推一个成人动漫的情况,因为实际上把用户切成两个了。但是这样切分也是有风险的,因为有可能这个人成天都喜欢看成人动漫。所以这个会把我们本来就比较稀疏的数据变得更稀疏。
但是发现对整个观看时长的提升以及对广告点击率的提升还是比较显著的,大概在4%左右,就是用AB测试得到的结果。
刚才主要在讲watch,其实用户在网站上还有其他行为,像Search、Browse、浏览,还有Rating,Rating比较少一点。
所以这几类行为实际上用户做的时候,如果把用户整个生命周期,从他sign up开始到他退订为止看成一个轨迹的话,那他做了一系列的事。
我们现在是说对每个用户的轨迹做建模。刚才你如果想象是CF-NADE,就是说把用户所有的行为当成一些个体扔到一个大袋子里面去,然后筛一筛,说统计上是怎么样的。实际上它的时间顺序已经丢失了,里面用户具体的动态也没有考虑,如果根据用户行为做这种模型time series model其实可以达到最好的效果。
说服用户这件事,因为刚才讲得所有模型,其实最后就是一个展示,无论是用货架的方法来展示,还是用自动播放的方法来展示。但是这个展示的有效性很大程度上是取决于你有没有打动用户,要打动用户试图给出一些推荐的理由,比如我们给这个用户推了这个剧,我们会说是因为你看过他的前传,这样的话用户会觉得,你确实是有道理的。还有一个增强用户对系统的信任,如果你的系统是黑盒,扔出来一堆剧说看吧,那估计很难说服用户。大家可以回想一下,在录像店的体验,如果是那种小店的话,你跟那个店主特别熟,他给你推一个张媛又拍了一个新片你可以看。你会知道,他真的知道你了解你,给你推这个东西,我们想达到的就是让计算机能够被用户所信任。
还有一个展示的问题,要降低用户尝新的成本。因为用户点进去,如果看了20分钟发现这个片很烂的话,那这个体验就比较差,浪费了20分钟。我们怎么样让用户快速的知道这个片到底适不适合他?我们做了一个自动压缩的方法。
大家看到它有这样一个下拉菜单,我们对于生成短视频有三种不同的模式:
写在最后,用户推荐系统是一个不断调试,不断优化的过程。在此过程中寻找适合本公司商业模式和用户喜好的个性推荐系统。本文写的不是很细致,欢迎大家留言交流。
本文由 @penny 原创发布于人人都是产品经理。未经许可,禁止转载。